

CHARACTER RECOGNITION USING NEURAL NETWORKS

Eugen Ganea, Marius Brezovan, Simona Ganea

Department of Software Engineering, School of Automation, Computers and Electronics,

University of Craiova, 13 A.I. Cuza Str., 1100 Craiova, Romania

Phone: (0251) 435724/ext.163, Fax: (0251) 438198, Email: ganea_eugen@software.ucv.ro

Abstract: Numerous advances have been made in developing intelligent systems, some

inspired by biological networks. The paper discuses about then usefulness of neural

networks, more specifically the motivations behind the development of neural networks, the

outline network architectures and learning processes. We conclude with character

recognition, a successful layered neural network application.

Keywords: neural network, training procedure, layered network, learning rule, perceptron,

back propagation, character recognition.

1. INTRODUCTION

Neural networks are a powerful model to deal with

many pattern recognition problems. In many

applications a complete supervised approach is

assumed: a supervisor provides a set of labeled

examples specifying for each input pattern the target

output for the neural network. Thus, this learning

scheme requires knowing a priori the exact target

values for the neural network outputs for each example

in the learning set. Neural networks classifiers (NN)

have been used extensively in character recognition [2,

3, 5, and 7]. Many recognition systems are based on

multilayer perceptrons (MLPs) [3, 5, and 7]. Gader et

al. [7] describe an algorithm for hand printed word

recognition that uses four 27–output–4–layer back

propagation networks to account for uppercase and

lowercase characters.

In this paper we investigate the characters recognition

using different number of classes and different

classification strategies. Section 2 presents the

fundamentals of neuronal networks. Section 3 presents

some strategies to supervised learning and presented

three main classes of learning procedure. The

application is described in Section 4. Some conclusions

are drawn in Section 5.

2. FUNDAMENTALS OF NEURAL NETWORKS

All neural networks have in common the following

four attributes:

- a set of processing units;

- a set of connections;

- a computing procedure;

- a training procedure.

2.1 The processing units

Neural network consists of a huge number of very

simple processing units, similar to neurons in brain.

These units may work in a complete parallel fashion,

operating simultaneous. The computations in this

system are made without the coordination of any

master processor, excepting the case in which the

neural network is simulated on a conventional

computer. The unit computes a scalar function of its

input, and broadcast the result to the units connected to

it. The result is called activation value.

The unit may be classified into:

- input units, which receive data from the

environment;

- hidden units, which transform the internal data

of the network;

- output unit, which represent the decision or

control signals.

The state of the network represents the set of activation

values of over all units.

2.2 The Connections

The units in a network are organized into a given

topology by a set of connections, or weights shown as

lines in the following diagrams. The connections are

fundamental in determining the topology of the neural

network. Common topologies are: unstructured,

layered and modular. Each has its domain of

applicability:

- unstructured networks are useful for pattern

completion;

- layered networks are useful for pattern

association;

- modular networks are useful for building

complex systems from simple structures.

The connectivity between two groups of units may be

complete (the most frequent case), random, or local

(connecting one neighborhood to another). A

completely connected network has the most degree of

freedom, so it can learn more functions than the

constraint networks. This has the drawback in the case

of small training set in which the network will simply

memorize the input vectors, not being able to

generalize. The networks with a limited connectivity

may improve generalization, and effectiveness of the

system. The local connections may help in special

problems as recognizing shapes in a visual processing

system.

2.3 Computation

Computations begin by presenting the input vectors to

the units from the input layer. Then the activation of

the remaining units are computed, synchronously (all at

once in a parallel system) or asynchronously (one at a

time in a randomized order). In the layered networks

this process is called forward propagation. In this type

of networks the computation ends after the activations

of the output units are computed. For a given unit the

computation takes two stages:

- first it is computed the network input, or

internal activation;

- compute the output activation as a function of

network input.

∑=
i

ijij ywx , (1)

where jx is the internal activation, iy is the output

activation of an incoming unit, and jiw is the weight

from unit i to unit j.

After the computation of jx , the second phase is to

compute the output activation jy as function of jx .

Usually, this function may have three forms: linear,

threshold, sigmoidal. The linear case implies

jy = jx , which is not powerful, because a number of

hidden layers of linear units may be replaced by only

one equivalent such layer. So to construct non linear

functions, a network needs non linear units. The

simplest form of non linearity is implemented by the

threshold function:

>

≤
=

0,1

0,0
)(

ifx

ifx
xy , (2)

Multi layered network with such units may compute

any Boolean function. The problem with this function

is then when training the network, finding the right

weights takes exponential time. A practical learning

rule exists only for networks on hidden la layer. There

are many applications in which continuous outputs are

desired. The most common function is the sigmoidal

function:

x
e

xy
−+

=
1

1
)(, (3)

or

)tanh()(xxy = , (4)

Non local activation functions can be used to impose

global constraint on the output of the units in certain

layer, for example to some 1, just like probabilities.

One of these functions is softmax:

∑
=

i

x

x

i

j

e

e
jy)(, (5)

2.4 Training

In the most general sense training a network means

adapting its connections so that the network can exhibit

the desired computational behavior for all input

patterns. The process usually involves modifying

weights (moving the hyperplanes / hyper spheres); but

sometimes it also involves modifying the actual

topology of the network, adding or deleting

connections from the network (adding or deleting

hyperplanes / hyperspheres). In a sense, weight

modification is more general than topology

modification, since a network with abundant

connections can learn to set any of its eights to zero,

which has the same effect as deleting its weights.

However, topological changes can improve both

generalization and the speed of learning, by

constraining the class of functions that the network is

capable of learning. Finding a set of weights that will

enable a given network to compute a given function is

usually a non trivial procedure. An analytical solution

exists only in the simplest case of pattern association,

when the network is linear and the goal is to map a set

of orthogonal input vectors to output vectors.

In this case the weights are given by the following

relation:

∑=
p p

ji

ji
y

ty
w

||
, (6)

Here y is the input vector, t is the target vector and p is

the pattern index. In general, networks are non linear

and multilayered, and their weights can be trained only

by an iterative procedure, such as gradient descent on a

global performance measure. This requires multiple

passes of training on the entire training set; each pass is

called iteration or an epoch. More over, since the

accumulated knowledge is distributed over all of the

weights, the weights must be modified very gently so

as not to destroy all the previous learning. A small

constant called the learning rate (e) is thus used to

control the magnitude of weight modification. Finding

a good value for the learning rate is very important; if

the value is too small, learning takes forever; but if the

value is too large, learning disrupts the previous

knowledge. Unfortunately, there is no analytical

method for finding the optimal learning rate; it is

usually optimized empirically, by just trying different

values.

3. SUPERVISED LEARNING

There are three main classes of learning procedure:

- supervised learning, in which a teacher

provides output targets for each input pattern

and corrects the network‘s explicitly.

- semi-supervised (or reinforcement) learning,

in which a teacher merely indicates whether

the networks’ response to a training pattern is

“good” or “bad”;

- unsupervised learning, in which there is no

teacher and a network must find regularities in

the training data by itself.

Most networks fall squarely into one of these

categories, but there are also various anomalous

networks, such as hybrid networks which straddle these

categories, and dynamic networks whose architecture

can go or shrink over time. In speech recognition are

mainly used the Multi – layer Perceptrons (first class)

and sometimes the Kohonen maps (last class).

3.1 Introduction

Supervised learning means that a “teacher” provides

output target for each input pattern, and corrects the

network’s errors explicitly. This paradigm can be

applied to many types of networks, both feed forward

and recurrent in nature. We will discuss these two

cases separately. Perceptrons are the simplest type of

feed forward networks that use supervised learning. A

perceptron is comprised of binary threshold units

arranged in two layers. Because a perceptron’s

activations are binary, this general learning rule

reduces to the Perceptron Learning Rule, which says

that if an input is active and the output y is wrong then

w should be either increased or decreased by a small

amount µ , depending if the desired output is 1 or 0,

respectively. This procedure is guaranteed to find a set

of weights to correctly classify the patterns in any

training set if the patterns are linearly separable, if they

can be separated into two classes by a straight line.

Most training sets, however, are not linearly separable;

in these cases we require multiple layers. Multi layer

perceptrons (MLPs) can theoretically learn any

function, but they are more complex to training. MLPs

may have any number of hidden layers although a

single hidden layer is sufficient for many applications,

and additional hidden layers tend to make training

slower, as the terrain in weight space becomes more

complicated. MLPs can also be architecturally

constrained in various ways, for instance by limiting

their connectivity to geometrically local areas, or by

limiting the values of the weights or tying different

weights together.

3.2 Back propagation

Back propagation is the most widely used supervised

training algorithm for neural networks. We begin with

a full derivation of the learning rule. Suppose we have

a multi layered feed forward network of non linear

(typically sigmoidal) units. We want to find value for

the weights that will enable the network to compute a

desired function from input vectors to output vectors.

Because the units compute non linear functions we can

not solve for the weights analytically; so we will

instead use a gradient descendent procedure on some

global error function E. Let us define i, j and k as

arbitrary unit indices, O as the set of output units, p as

training pattern indices (where each training pattern

contains an input vector and output target vector), as

the net input to unit j for pattern p, as the output

activation of unit j from pattern p, as the weight from

unit I to unit j, as the target activation for unit j in

pattern p (for j in O), as the global output error for

training pattern p, and E as the global error for the

entire training set. Assuming the most common type of

networks, we have:

∑=
i

ijij ywx

x
e

xy
−+

=
1

1
)(, (7)

It is essential that this activation function be

differentiable, as opposite to non differentiable as in a

simple threshold function, because we will be

computing its gradient in a moment. The choice of

error function is somewhat arbitrary; let us assume the

Sum Squared error function:

∑ −=
j

jj tyE
2)(

2

1
, j∈O, (8)

We want to modify each weight in proportion to its

influence on the error E, in the direction that will

reduce E:

ji

ji
w

E
w

∂

∂
−=∆ µ)(, (9)

where µ is a small constant, called the learning rate. By

the Chain Rule and from the previous equations, we

can expand this as follows:

ji

j

j

j

jji w

x

x

y

y

E

w

E

∂

∂

∂

∂

∂

∂
=∆)(, (10)

the first of these three terms, which introduces the

shorthand definition, remains to be expanded. Exactly

how it is expanded depends on whether j in an output

unit or not. If j is an output unit we have:

j ∈ O ⇒

jy

E

∂

∂
= (y j - t j), (11)

But if j is not an output unit, then it directly affects a

set of units and by the Chain Rule we obtain:

⇒∉ Oj

jy

E

∂

∂
= ∑

∈)(joutk kj

k

k

k

k w

x

x

y

y

E

∂

∂

∂

∂

∂

∂
=

= kj

joutk

k wxk∑
∈)(

)()(σγ , (12)

The recursion in this equation, in which jγ refers to

kγ , says that the γ ’s in each layer can be derived

directly from the γ ’s in the next layer. Thus, we can

derive all theγ ’s in a multilayer network by starting at

the output layer and working our way backwards

towards the input layer, one layer at a time. This

learning procedure is called “back propagation”

because the error terms (γ ’s) are propagated through

the network in this backwards direction. Back

propagation can take a long time for it to converge to

an optimal set of weights. Learning may be accelerated

by increasing the learning rate e, but only up to certain

point, because when the learning rate becomes too

large, weights become excessive, units become

saturated, and learning becomes impossible. Thus, a

number of other heuristics have been developed to

accelerate learning. These techniques are generally

motivated by an intuitive image of back propagation as

a gradient descendent procedure. That is, if we

envision a highly landscape representing the error

function E over weight space, then back propagation

tries to find a local minimum value of E by taking

incremental steps down the current hill side in the

direction. This image helps us see, for example, that if

we take too large of a step, when run the risk of

moving so far down the current hill side that we find

ourselves shouting up some other nearby hill side, with

possible a higher error than before. Bearing this image

in mind, one common heuristic for accelerating the

learning process is known as momentum, which tends

to push the weights further along in the most recently

useful direction:

))1(()()(−∆⋅+
∂

∂
−=∆ tw

w

E
tw ji

ji

ji αµ , (13)

where α is the momentum constant, usually between

0.50 and 0.95. This heuristic causes the step size to

steadily increase as long as we keep moving down a

long gentle valley, and also to recover from this

behavior when the error surface forces us to change

directions. Ordinarily the weights are updated after

each training pattern (this is called online training). But

sometimes it is more effective to update the weights

only after accumulating the gradients over a whole

batch of training patterns (this is called batch training),

because by superimposing the error landscapes for

many training patterns, we can find a direction to

move, which is best for the whole group of patterns,

and then confidently take a larger step in that direction.

Because back propagation is a simple gradient descend

procedure, it is unfortunately susceptible to the

problem of local minima, it may converge upon a set of

weights that are locally optimal, but globally

suboptimal. In any case, it is possible to deal with the

problem of local minima by adding noise to the weight

modifications.

3.3 The algorithms

The algorithms are a forward implementation of the

discussed theories regarding MLP. Our choice for

transfer functions is sigmoid function. Its derivative

has the expression:

))(1)(())((xfxfxf
x

−=
∂

∂
, (14)

The propagation algorithm:

Propagate (input_vector, output_vector);

 *Copy the input_vector in the input activation Y0

 for (i=1;i<nLayers;i++)

 for(j=0;j<nNodesLayer[i];j++){

 ba[i][j] = brutActivation(i,j);

 y[i][j]=FT(ba[i][j]);

 }

 *Copy the output layer activations YN in the

 output_vector.

End.

And the training algorithm:

Train (vect_in, T);

 Propagate (vect_in, NULL);

 for (i=nLayers-1;i>0;i--)

 for (j=0;j<nNodesLayer[i];j++){

 if (i is the output layer){

 delta[i][j]=(y[i][j] – t[j]);

 if(using negative penalty)

 delta[i][j]*=b[j];

 energy+=(y[i][j]-t[j])*(y[i][j]-t[j]);

 delta[i][j]*=dFT(ba[i][j]);

 }

 else { //for hidden layers

 suma= (float)0.0;

 for (l=0;l<nNodesLayer;l++)

 suma+=delta[i+1][1]*w[i+1][1][j];

 delta[i][j]=suma*dFT(ba[i][j]);

 }

 //updating weights

 for (k=0;k<nNodesLayer[i-1];k++)

 w[i][j][k]+= -- eta*delta[i][j]*y[i-1][k];

 }

 return energy/2;

End.

4. CHARACTER RECOGNITION USING JAVA

It is often useful to have a machine perform pattern

recognition. A machine that reads banking checks can

process many more checks than a human being in the

same time. This kind of application saves time and

money, and eliminates the requirement that a human

perform such a repetitive task. We demonstrate how

character recognition can be done with a back

propagation network. A network is to be designed and

trained to recognize the 26 letters of the alphabet. An

imaging system that digitizes each letter centered in the

system’s field of vision is available. The result is that

each letter is represented as a 5 by 7 grid of boolean

values. We use the graphical printing characters of the

IBM extended ASCII character set to show a grayscale

output for each pixel (Boolean value). For example, if

we want to represent the letter X we have the following

values:

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

The imaging system is not perfect and the letters may

suffer from noise.

Perfect classification of ideal input vectors is required

and reasonably accurate classification of noisy vectors.

The twenty – six 35 element input vector are defined

using a matrix. Each target vector is a 26-element

vector with a 1 in the position of the letter it represents,

and 0’s everywhere else. For example, the letter E is to

be represented by a 1 in the fifth element (as E is the

fifth letter of the alphabet), and 0’s in the rest of the

elements of the twenty-six vector. The network

receives the 35 Boolean values as a 35-element input

vector. It is then required to identify the letter by

responding with a 26-element output vector. The 26

elements of the output vector each represent a letter. To

operate correctly, the network should respond with a 1

in the position of the letter being presented to the

network. All other values in the output vector should

be 0. In addition, the network should be able to handle

noise. In practice, the network does not receive a

perfect Boolean vector as input. Specifically, the

network should make as few mistakes as possible when

classifying vectors with noise of mean 0 and standard

deviation of 0.2 or less. The neural network needs 35

inputs and 26 neurons in its output layer to identify the

letters. The network is a two-layer log-sigmoid/log-

sigmoid network. The log-sigmoid transfer function

was picked because its output range (0 to 1) is perfect

for learning to output boolean values.

The hidden (first) layer has 10 neurons. If the network

has trouble learning, then neurons can be added to this

layer. The network is trained to output a 1 in the

correct position of the output vector and to fill the rest

of the output vector with 0’s. However, noisy input

vectors may result in the network not creating perfect

1’s and 0’s. The result of this post-processing is the

output that is actually used. To create a network that

can handle noisy input vectors it is best to train the

network on both ideal and noisy vectors. To do this, the

network is first trained on ideal vectors until it has a

low sum-squared error. Then, the network is trained on

10 sets of ideal and noisy vectors. The network is

trained on two copies of the noise-free alphabet at the

same time as it is trained on noisy vectors. The two

copies of the noise-free alphabet are used to maintain

the network’s ability to classify ideal input vectors.

Unfortunately, after the training described above the

network may have learned to classify some difficult

noisy vectors at the expense of properly classifying a

noise-free vector. Therefore, the network is again

trained on just ideal vectors. This ensures that the

network responds perfectly when presented with an

ideal letter. All training is done using back propagation

with both adaptive learning rate and momentum with

the function set_training(). The network is initially

trained without noise for a maximum of 5000 epochs or

until the network sum-squared error falls beneath 0.1.

To obtain a network not sensitive to noise, we trained

with two ideal copies and two noisy copies of the

vectors in alphabet. The target vectors consist of four

copies of the vectors in target. The noisy vectors have

noise of mean 0.1 and 0.2 added to them. This forces

the neuron to learn how to properly identify noisy

letters, while requiring that it can still respond well to

ideal vectors. To train with noise, the maximum

number of epochs is reduced to 300 and the error goal

is increased to 0.6, reflecting that higher error is

expected because more vectors (including some with

noise), are being presented. Once the network is trained

with noise, it makes sense to train it without noise once

more to ensure that ideal input vectors are always

classified correctly. Therefore, the network is again

trained with code identical to the first pass of the

training. The reliability of the neural network pattern

recognition system is measured by testing the network

with hundreds of input vectors with varying quantities

of noise. We test the network at various noise levels,

and then graph the percentage of network errors versus

noise. Noise with a mean of 0 and a standard deviation

from 0 to 0.5 is added to input vectors. At each noise

level, 100 presentations of different noisy versions of

each letter are made and the network’s output is

calculated. The output is then passed through the

competitive transfer function so that only one of the 26

outputs (representing the letters of the alphabet), has a

value of 1. The number of erroneous classifications is

then added and percentages are obtained.

5. CONCLUSION

This problem demonstrates how a simple pattern

recognition system can be designed. Note that the

training process did not consist of a single call to a

training function. Instead, the network was trained

several times on various input vectors. In this case,

training a network on different sets of noisy vectors

forced the network to learn how to deal with noise, a

common problem in the real world. As we were able to

see neural network present certain advantages, like:

learn rapidly, highly parallel processing, distributed

representations, are able to learn new concepts, they

are robust with respect to input noise, node failure, can

adapt to input stimulus, they are a tool for modeling

and exploring brain functions, are successful in areas

like vision and speech recognition. But they also

present some drawbacks: neural networks can not

model higher level cognitive mechanism (attention,

symbols, focus of attention), a wrong level of

abstraction for describing higher level processes (the

problems are represented as a list of features, having

numerical values), and a huge number of trying for

training, sensitive to local minima.

 REFERENCES

 Aleksander, Igor, and Morton, Helen (1990), An

Introduction to Neural Computing, Chapman

and Hall, London.

Anzai, Yuichiro (1992), Pattern Recognition and

Machine Learning, Academic Press, Englewood

Cliffs, NJ.

Freeman, James A., and Skapura, David M. (1991),

Neural Networks Algorithms, Applications, and

Programming Techniques, Addison-Wesley,

Reading, MA.

Hertz, John, Krogh, Anders, and Palmer, Richard

(1991) , Introduction to the Theory of Neural

Computation, Addison-Wesley, Reading, MA.

Rzempoluck, E. J. (1998), Neural Network Data

Analysis Using Simulne, Springer, New-York.

Wasserman, Philip D. (1989), Neural Computing, Van

Nostrand Reinhold, New York.

Gader, Paul, et al. (1992), “Fuzzy and Crisp

Handwritten Character Recognition Using

Neural Networks,” Conference Proceedings of

the 1992 Artificial Neural Networks in

Engineering Conference, V.3, pp. 421–424.

