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Abstract: Numerous advances have been made in developing intelligent systems, some 

inspired by biological networks. The paper discuses about then usefulness of neural 

networks, more specifically the motivations behind the development of neural networks, the 

outline network architectures and learning processes. We conclude with character 

recognition, a successful layered neural network application. 
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1. INTRODUCTION 

 

Neural networks are a powerful model to deal with 

many pattern recognition problems. In many 

applications a complete supervised approach is 

assumed: a supervisor provides a set of labeled 

examples specifying for each input pattern the target 

output for the neural network. Thus, this learning 

scheme requires knowing a priori the exact target 

values for the neural network outputs for each example 

in the learning set. Neural networks classifiers (NN) 

have been used extensively in character recognition [2, 

3, 5, and 7]. Many recognition systems are based on 

multilayer perceptrons (MLPs) [3, 5, and 7]. Gader et 

al. [7] describe an algorithm for hand printed word 

recognition that uses four 27–output–4–layer back 

propagation networks to account for uppercase and 

lowercase characters. 

 

In this paper we investigate the characters recognition 

using different number of classes and different 

classification strategies. Section 2 presents the 

fundamentals of neuronal networks. Section 3 presents 

some strategies to supervised learning and presented 

three main classes of learning procedure. The 

application is described in Section 4. Some conclusions 

are drawn in Section 5. 

 

 

2. FUNDAMENTALS OF NEURAL NETWORKS 
 
All neural networks have in common the following 

four attributes: 

- a set of processing units; 

- a set of connections; 

- a computing procedure; 

- a training procedure. 

 

 

2.1 The processing units 

 

Neural network consists of a huge number of very 

simple processing units, similar to neurons in brain. 

These units may work in a complete parallel fashion, 

operating simultaneous. The computations in this 

system are made without the coordination of any 

master processor, excepting the case in which the 

neural network is simulated on a conventional 

computer. The unit computes a scalar function of its 

input, and broadcast the result to the units connected to 

it. The result is called activation value.  



The unit may be classified into: 

- input units, which receive data from the 

environment; 

- hidden units, which transform the internal data 

of the network; 

- output unit, which represent the decision or 

control signals. 

The state of the network represents the set of activation 

values of over all units.  

 

 

2.2 The Connections 

 

The units in a network are organized into a given 

topology by a set of connections, or weights shown as 

lines in the following diagrams. The connections are 

fundamental in determining the topology of the neural 

network. Common topologies are: unstructured, 

layered and modular. Each has its domain of 

applicability:  

- unstructured networks are useful for pattern 

completion; 

- layered networks are useful for pattern 

association; 

- modular networks are useful for building 

complex systems from simple structures.  

 

The connectivity between two groups of units may be 

complete (the most frequent case), random, or local 

(connecting one neighborhood to another). A 

completely connected network has the most degree of 

freedom, so it can learn more functions than the 

constraint networks. This has the drawback in the case 

of small training set in which the network will simply 

memorize the input vectors, not being able to 

generalize. The networks with a limited connectivity 

may improve generalization, and effectiveness of the 

system. The local connections may help in special 

problems as recognizing shapes in a visual processing 

system.  

 

 

2.3 Computation 

 

Computations begin by presenting the input vectors to 

the units from the input layer. Then the activation of 

the remaining units are computed, synchronously (all at 

once in a parallel system) or asynchronously (one at a 

time in a randomized order). In the layered networks 

this process is called forward propagation. In this type 

of networks the computation ends after the activations 

of the output units are computed. For a given unit the 

computation takes two stages: 

- first it is computed the network input, or 

internal activation; 

- compute the output activation as a function of 

network input. 
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where jx is the internal activation, iy is the output 

activation of an incoming unit, and jiw is the weight 

from unit i to unit j.  

After the computation of jx , the second phase is to 

compute the output activation jy  as function of jx . 

Usually, this function may have three forms: linear, 

threshold, sigmoidal. The linear case implies       

jy = jx , which is not powerful, because a number of 

hidden layers of linear units may be replaced by only 

one equivalent such layer. So to construct non linear 

functions, a network needs non linear units. The 

simplest form of non linearity is implemented by the 

threshold function: 
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Multi layered network with such units may compute 

any Boolean function. The problem with this function 

is then when training the network, finding the right 

weights takes exponential time. A practical learning 

rule exists only for networks on hidden la layer. There 

are many applications in which continuous outputs are 

desired. The most common function is the sigmoidal 

function: 
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or      

)tanh()( xxy = ,  (4) 

Non local activation functions can be used to impose 

global constraint on the output of the units in certain 

layer, for example to some 1, just like probabilities. 

One of these functions is softmax: 
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2.4 Training 

 

In the most general sense training a network means 

adapting its connections so that the network can exhibit 

the desired computational behavior for all input 

patterns. The process usually involves modifying 

weights (moving the hyperplanes / hyper spheres); but 

sometimes it also involves modifying the actual 

topology of the network, adding or deleting 

connections from the network (adding or deleting 



hyperplanes / hyperspheres). In a sense, weight 

modification is more general than topology 

modification, since a network with abundant 

connections can learn to set any of its eights to zero, 

which has the same effect as deleting its weights. 

However, topological changes can improve both 

generalization and the speed of learning, by 

constraining the class of functions that the network is 

capable of learning. Finding a set of weights that will 

enable a given network to compute a given function is 

usually a non trivial procedure. An analytical solution 

exists only in the simplest case of pattern association, 

when the network is linear and the goal is to map a set 

of orthogonal input vectors to output vectors.                                                                                     

In this case the weights are given by the following 

relation: 
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Here y is the input vector, t is the target vector and p is 

the pattern index. In general, networks are non linear 

and multilayered, and their weights can be trained only 

by an iterative procedure, such as gradient descent on a 

global performance measure. This requires multiple 

passes of training on the entire training set; each pass is 

called iteration or an epoch. More over, since the 

accumulated knowledge is distributed over all of the 

weights, the weights must be modified very gently so 

as not to destroy all the previous learning. A small 

constant called the learning rate (e) is thus used to 

control the magnitude of weight modification. Finding 

a good value for the learning rate is very important; if 

the value is too small, learning takes forever; but if the 

value is too large, learning disrupts the previous 

knowledge. Unfortunately, there is no analytical 

method for finding the optimal learning rate; it is 

usually optimized empirically, by just trying different 

values.  

 

 

3. SUPERVISED LEARNING 

 

There are three main classes of learning procedure: 

- supervised learning, in which a teacher 

provides output targets for each input pattern 

and corrects the network‘s explicitly.  

- semi-supervised (or reinforcement) learning, 

in which a teacher merely indicates whether 

the networks’ response to a training pattern is 

“good” or “bad”; 

- unsupervised learning, in which there is no 

teacher and a network must find regularities in 

the training data by itself.  

 

Most networks fall squarely into one of these 

categories, but there are also various anomalous 

networks, such as hybrid networks which straddle these 

categories, and dynamic networks whose architecture 

can go or shrink over time. In speech recognition are 

mainly used the Multi – layer Perceptrons (first class) 

and sometimes the Kohonen maps (last class).  

 

 

3.1 Introduction 

 

Supervised learning means that a “teacher” provides 

output target for each input pattern, and corrects the 

network’s errors explicitly. This paradigm can be 

applied to many types of networks, both feed forward 

and recurrent in nature. We will discuss these two 

cases separately. Perceptrons are the simplest type of 

feed forward networks that use supervised learning. A 

perceptron is comprised of binary threshold units 

arranged in two layers. Because a perceptron’s 

activations are binary, this general learning rule 

reduces to the Perceptron Learning Rule, which says 

that if an input is active and the output y is wrong then 

w should be either increased or decreased by a small 

amount µ , depending if the desired output is 1 or 0, 

respectively. This procedure is guaranteed to find a set 

of weights to correctly classify the patterns in any 

training set if the patterns are linearly separable, if they 

can be separated into two classes by a straight line. 

Most training sets, however, are not linearly separable; 

in these cases we require multiple layers. Multi layer 

perceptrons (MLPs) can theoretically learn any 

function, but they are more complex to training. MLPs 

may have any number of hidden layers although a 

single hidden layer is sufficient for many applications, 

and additional hidden layers tend to make training 

slower, as the terrain in weight space becomes more 

complicated. MLPs can also be architecturally 

constrained in various ways, for instance by limiting 

their connectivity to geometrically local areas, or by 

limiting the values of the weights or tying different 

weights together. 

 

 

3.2 Back propagation 

 

Back propagation is the most widely used supervised 

training algorithm for neural networks. We begin with 

a full derivation of the learning rule. Suppose we have 

a multi layered feed forward network of non linear 

(typically sigmoidal) units. We want to find value for 

the weights that will enable the network to compute a 

desired function from input vectors to output vectors. 

Because the units compute non linear functions we can 

not solve for the weights analytically; so we will 

instead use a gradient descendent procedure on some 

global error function E. Let us  define i, j and k as 

arbitrary unit indices, O as the set of output units, p as 

training pattern indices (where each training pattern 



contains an input vector and output target vector), as 

the net input to unit j for pattern p, as the output 

activation of unit j from pattern p, as the weight from 

unit I to unit j, as the target activation for unit j in 

pattern p (for j in O), as the global output error for 

training pattern p, and E as the global error for the 

entire training set. Assuming the most common type of 

networks, we have: 
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It is essential that this activation function be 

differentiable, as opposite to non differentiable as in a 

simple threshold function, because we will be 

computing its gradient in a moment. The choice of 

error function is somewhat arbitrary; let us assume the 

Sum Squared error function: 
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We want to modify each weight in proportion to its 

influence on the error E, in the direction that will 

reduce E: 

 

ji

ji
w

E
w

∂

∂
−=∆ µ)( , (9) 

 

where µ is a small constant, called the learning rate. By 

the Chain Rule and from the previous equations, we 

can expand this as follows: 
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the first of these three terms, which introduces the 

shorthand definition, remains to be expanded. Exactly 

how it is expanded depends on whether j in an output 

unit or not. If j is an output unit we have: 
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But if j is not an output unit, then it directly affects a 

set of units and by the Chain Rule we obtain: 
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The recursion in this equation, in which jγ  refers to 

kγ , says that the γ ’s in each layer can be derived 

directly from the γ ’s in the next layer. Thus, we can 

derive all theγ ’s in a multilayer network by starting at 

the output layer and working our way backwards 

towards the input layer, one layer at a time. This 

learning procedure is called “back propagation” 

because the error terms (γ ’s) are propagated through 

the network in this backwards direction. Back 

propagation can take a long time for it to converge to 

an optimal set of weights. Learning may be accelerated 

by increasing the learning rate e, but only up to certain 

point, because when the learning rate becomes too 

large, weights become excessive, units become 

saturated, and learning becomes impossible. Thus, a 

number of other heuristics have been developed to 

accelerate learning. These techniques are generally 

motivated by an intuitive image of back propagation as 

a gradient descendent procedure. That is, if we 

envision a highly landscape representing the error 

function E over weight space, then back propagation 

tries to find a local minimum value of E by taking 

incremental steps down the current hill side in the 

direction. This image helps us see, for example, that if 

we take too large of a step, when run the risk of 

moving so far down the current hill side that we find 

ourselves shouting up some other nearby hill side, with 

possible a higher error than before. Bearing this image 

in mind, one common heuristic for accelerating the 

learning process is known as momentum, which tends 

to push the weights further along in the most recently 

useful direction: 
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where α  is the momentum constant, usually between 

0.50 and 0.95. This heuristic causes the step size to 

steadily increase as long as we keep moving down a 

long gentle valley, and also to recover from this 

behavior when the error surface forces us to change 

directions. Ordinarily the weights are updated after 

each training pattern (this is called online training). But 

sometimes it is more effective to update the weights 

only after accumulating the gradients over a whole 

batch of training patterns (this is called batch training), 

because by superimposing the error landscapes for 

many training patterns, we can find a direction to 



move, which is best for the whole group of patterns, 

and then confidently take a larger step in that direction. 

Because back propagation is a simple gradient descend 

procedure, it is unfortunately susceptible to the 

problem of local minima, it may converge upon a set of 

weights that are locally optimal, but globally 

suboptimal. In any case, it is possible to deal with the 

problem of local minima by adding noise to the weight 

modifications.  

 

 

3.3 The algorithms 

 

The algorithms are a forward implementation of the 

discussed theories regarding MLP. Our choice for 

transfer functions is sigmoid function. Its derivative 

has the expression: 
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The propagation algorithm: 

Propagate (input_vector, output_vector); 

      *Copy the input_vector in the input activation Y0 

             for (i=1;i<nLayers;i++) 

                  for(j=0;j<nNodesLayer[i];j++){ 

                             ba[i][j] = brutActivation(i,j); 

                             y[i][j]=FT(ba[i][j]);  

   } 

        *Copy the output layer activations YN in the 

        output_vector. 

End. 

And the training algorithm: 

Train (vect_in, T); 

        Propagate (vect_in, NULL); 

        for (i=nLayers-1;i>0;i--) 

             for (j=0;j<nNodesLayer[i];j++){ 

                if ( i is the output layer){ 

                    delta[i][j]=(y[i][j] – t[j]); 

                    if(using negative penalty) 

                              delta[i][j]*=b[j]; 

                   energy+=(y[i][j]-t[j])*( y[i][j]-t[j]); 

                  delta[i][j]*=dFT(ba[i][j]);   

               } 

              else { //for hidden layers  

                  suma= (float)0.0; 

                 for (l=0;l<nNodesLayer;l++) 

                      suma+=delta[i+1][1]*w[i+1][1][j]; 

                delta[i][j]=suma*dFT(ba[i][j]);   

             } 

             //updating weights 

            for (k=0;k<nNodesLayer[i-1];k++) 

               w[i][j][k]+= -- eta*delta[i][j]*y[i-1][k]; 

         } 

     return energy/2; 

End. 

 

 

4. CHARACTER RECOGNITION USING JAVA 

 

It is often useful to have a machine perform pattern 

recognition. A machine that reads banking checks can 

process many more checks than a human being in the 

same time. This kind of application saves time and 

money, and eliminates the requirement that a human 

perform such a repetitive task. We demonstrate how 

character recognition can be done with a back 

propagation network. A network is to be designed and 

trained to recognize the 26 letters of the alphabet. An 

imaging system that digitizes each letter centered in the 

system’s field of vision is available. The result is that 

each letter is represented as a 5 by 7 grid of boolean 

values. We use the graphical printing characters of the 

IBM extended ASCII character set to show a grayscale 

output for each pixel (Boolean value). For example, if 

we want to represent the letter X we have the following 

values: 

1 0 0 0 1 

0 1 0 1 0 

0 0 1 0 0 

0 0 1 0 0 

0 1 0 1 0 

1 0 0 0 1 

 

The imaging system is not perfect and the letters may 

suffer from noise. 

Perfect classification of ideal input vectors is required 

and reasonably accurate classification of noisy vectors. 

The twenty – six 35 element input vector are defined 

using a matrix. Each target vector is a 26-element 

vector with a 1 in the position of the letter it represents, 

and 0’s everywhere else. For example, the letter E is to 

be represented by a 1 in the fifth element (as E is the 

fifth letter of the alphabet), and 0’s in the rest of the 

elements of the twenty-six vector. The network 

receives the 35 Boolean values as a 35-element input 

vector. It is then required to identify the letter by 

responding with a 26-element output vector. The 26 

elements of the output vector each represent a letter. To 

operate correctly, the network should respond with a 1 

in the position of the letter being presented to the 

network. All other values in the output vector should 

be 0. In addition, the network should be able to handle 

noise. In practice, the network does not receive a 

perfect Boolean vector as input. Specifically, the 

network should make as few mistakes as possible when 

classifying vectors with noise of mean 0 and standard 

deviation of 0.2 or less. The neural network needs 35 

inputs and 26 neurons in its output layer to identify the 

letters. The network is a two-layer log-sigmoid/log-

sigmoid network. The log-sigmoid transfer function 

was picked because its output range (0 to 1) is perfect 

for learning to output boolean values. 

 



The hidden (first) layer has 10 neurons. If the network 

has trouble learning, then neurons can be added to this 

layer. The network is trained to output a 1 in the 

correct position of the output vector and to fill the rest 

of the output vector with 0’s. However, noisy input 

vectors may result in the network not creating perfect 

1’s and 0’s. The result of this post-processing is the 

output that is actually used. To create a network that 

can handle noisy input vectors it is best to train the 

network on both ideal and noisy vectors. To do this, the 

network is first trained on ideal vectors until it has a 

low sum-squared error. Then, the network is trained on 

10 sets of ideal and noisy vectors. The network is 

trained on two copies of the noise-free alphabet at the 

same time as it is trained on noisy vectors. The two 

copies of the noise-free alphabet are used to maintain 

the network’s ability to classify ideal input vectors. 

Unfortunately, after the training described above the 

network may have learned to classify some difficult 

noisy vectors at the expense of properly classifying a 

noise-free vector. Therefore, the network is again 

trained on just ideal vectors. This ensures that the 

network responds perfectly when presented with an 

ideal letter. All training is done using back propagation 

with both adaptive learning rate and momentum with 

the function set_training(). The network is initially 

trained without noise for a maximum of 5000 epochs or 

until the network sum-squared error falls beneath 0.1. 

To obtain a network not sensitive to noise, we trained 

with two ideal copies and two noisy copies of the 

vectors in alphabet. The target vectors consist of four 

copies of the vectors in target. The noisy vectors have 

noise of mean 0.1 and 0.2 added to them. This forces 

the neuron to learn how to properly identify noisy 

letters, while requiring that it can still respond well to 

ideal vectors. To train with noise, the maximum 

number of epochs is reduced to 300 and the error goal 

is increased to 0.6, reflecting that higher error is 

expected because more vectors (including some with 

noise), are being presented. Once the network is trained 

with noise, it makes sense to train it without noise once 

more to ensure that ideal input vectors are always 

classified correctly. Therefore, the network is again 

trained with code identical to the first pass of the 

training. The reliability of the neural network pattern 

recognition system is measured by testing the network 

with hundreds of input vectors with varying quantities 

of noise. We test the network at various noise levels, 

and then graph the percentage of network errors versus 

noise. Noise with a mean of 0 and a standard deviation 

from 0 to 0.5 is added to input vectors. At each noise 

level, 100 presentations of different noisy versions of 

each letter are made and the network’s output is 

calculated. The output is then passed through the 

competitive transfer function so that only one of the 26 

outputs (representing the letters of the alphabet), has a 

value of  1. The number of erroneous classifications is 

then added and percentages are obtained. 

 

 

5. CONCLUSION 

 

This problem demonstrates how a simple pattern 

recognition system can be designed. Note that the 

training process did not consist of a single call to a 

training function. Instead, the network was trained 

several times on various input vectors. In this case, 

training a network on different sets of noisy vectors 

forced the network to learn how to deal with noise, a 

common problem in the real world. As we were able to 

see neural network present certain advantages, like: 

learn rapidly, highly parallel processing, distributed 

representations, are able to learn new concepts, they 

are robust with respect to input noise, node failure, can 

adapt to input stimulus, they are a tool for modeling 

and exploring brain functions, are successful in areas 

like vision and speech recognition. But they also 

present some drawbacks: neural networks can not 

model higher level cognitive mechanism (attention, 

symbols, focus of attention), a wrong level of 

abstraction for describing higher level processes (the 

problems are represented as a list of features, having 

numerical values), and a huge number of trying for 

training, sensitive to local minima.    
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